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Abstract

The classical capture-recapture model involves two independent surveys and hence (usually)
two collectors (m = 2). Modern statistical applications suggest the desirability of considering
models with more than two collectors (m ≥ 3). We generalize classical results to this case and
derive further results for all m. Building from Darroch (1958), the general problem is explic-
itly formulated, minimal sufficient statistics are described, and an equation for the maximum
likelihood estimate is explicitly given. We then provide exact conditions for the existence and
uniqueness of the MLE. We also derive a discrete version of the Cramer-Rao lower bound and
prove the asymptotic efficiency of the MLE.

Asymptotics for this problem are studied in two separate domains. In the first, the number
of collectors tends to infinity while the population size is fixed. In the other asymptotic domain
m is fixed while the population size and the size of samples obtained by each collector is allowed
to grow. Darroch (1958) studied asymptotics for this situation under specific conditions on the
sample sizes. We extend his results so as to establish necessary and nearly sufficient conditions
in this setting for asymptotic normality of the MLE. This enables practical asymptotic statistical
inference as well as providing a simple, intuitive diagnostic for the validity of this inference.

Keywords: Capture-recapture; maximum likelihood estimator; asymptotic statistics

1 Introduction

Capture-recapture methods for estimation of population size have been studied for over a century.
The classical model for capture-recapture involves two independent surveys, and hence (usually)
two “collectors,” as mentioned in the works of Good (1953), Darroch (1958), Darroch (1959), Mao
and Lindsay (2007), Seber (1982), Darroch et al. (1993). Darroch et al. (1993) developed the triple-
system estimation framework, adding an additional re-capture to the dual system, resulting in a 23

table of counts.
Since Darroch et al. (1993), there has been little literature rigorously analyzing an estimation

framework with arbitrarily many samples or “re-captures.” But such studies continue to be used in
practical settings, and indeed it is now feasible to conduct studies with arbitrarily many collectors.

∗Deceased April 23, 2013
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Consider Amazon Mechanical Turk (MTurk), a website owned by Amazon that allows researchers
to achieve a multiple collection framework (Chandler and Kapelner (2013)). Or, for a recent study
involving a limited number of collectors, see Bales et al. (2015). Further remarks are made about
this study in Section 2.5.

Our main approach is that of maximum likelihood estimation (MLE). For early use of this
traditional approach see Craig (1953) and Darroch (1958). Craig (1953) considers a single collector
who collects butterflies in order to estimate the population of butterflies. He discusses the MLE and
moment estimators and derives expressions for the probability distribution of the frequency counts.
The single collector question is a special case of our multiple collection framework in terms of a
sequence of collectors, operating independently, who each collect only one butterfly. Throughout
this work, we assume that a predetermined list for the size of each collector’s sample is given at the
start. In Section 2, minimal sufficient statistics for this model are described, the MLE is derived,
and its existence is established. In Theorem 2 we prove our key result on the uniqueness of the
MLE.

In Section 3, asymptotic properties of this MLE are studied in two separate asymptotic regimes.
Section 3.1 concerns an asymptotic regime in which the number of collectors grows while the
population size remains fixed. Asymptotic results for boundary optimization, strong consistency
of the MLE, and convergence rates are presented. Results for this regime may be appropriate for
studies involving large numbers of collectors such as those that might be conducted by MTurk.
Section 3.2 concerns the more traditional asymptotic regime in which the number of collectors
remains fixed while the population size and the collection sizes grow larger. Darroch (1958) studied
such a regime when the collection sizes grow proportionally to the true sample size. He showed
the MLE is then asymptotically normal, although his proof is logically incomplete because he
assumed asymptotic normality of the total collection, rather than providing a proof. Our main
result, Theorem 9 in this section, gives a complete proof under a mild condition for speed of
growth of collection size relative to population size. Our condition is necessary and sufficient for
asymptotic normality when the ratio of the largest collection size to the full population size is
bounded below one. Along the way to this result we prove in Theorem 8 a central limit theorem
for the total collection size under this condition. This result may be viewed as an extension
of standard results on asymptotic normality of the entries in a 2m contingency table under the
usual independence assumption. Section 3.3 describes statistical inference based on the asymptotic
distribution established. Darroch (1958) did not explicitly consider asymptotic efficiency of the
MLE. This is the topic of our Section 4. In this section we derive a discrete version of the Cramer-
Rao lower bound and prove the MLE to be asymptotically efficient.

2 Model formulation

We consider a class of statistical models generalizing the very useful, classical capture-recapture
model. A simple paradigm that can help understand the basic general problem involves i-tunes
listeners and distinct i-tunes songs. An i-tunes collection contains θ songs. θ is the unknown pa-
rameter. There are m listeners (collectors). Each collector’s songs are played on an i-shuffle player.
Each time the i-shuffle player plays a song it chooses with equal probability one song. Listeners
record the names of the different songs they have heard, but not the number of times they have
listened to songs nor the number of times they have heard each song. Let n1, . . . , nm be the num-
ber of distinct songs heard by each listener. Assume each ni ≥ 1. The goal is to estimate θ. The
i-tunes setup is appealing because it guarantees the desired independence and equal probability of
sampling among songs.
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2.1 The “listening times” estimator

In this section and in Section 2.4, we describe two very differently motivated estimators of θ.
Surprisingly, the two methods lead to the same estimator (see Remark 1). In the current section,
we may think of the songs as being sampled with replacement at discrete times t = 1, 2, . . . However,
each listener only records the total number of distinct songs he or she has heard (and not the time
it took to collect them). Thus, the data recorded by each listener is the same as in the general
model described in the previous paragraph. Let tij , i = 1, ...,m; j = 1, ..., ni denote the time at
which listener i hears a song he or she has not heard before. Clearly, ti,1 = 1 and ti,j+1 > tij , j =
1, ..., ni − 1. We emphasize that these times exist but that they are not part of the data gathered
by the listeners. Let δi,r = ti,r − ti,r−1 denote the additional time it takes listener i to hear his/her
rth song, after hearing the (r− 1)th one. δr = δir is a geometric random variable with p = 1− r−1

θ
and

E [δr] =
θ

θ − r + 1
.

The expected time for a listener to collect all θ songs in the i-tunes collection is:
r=θ∑
r=1

θ

θ − r + 1
= θ

(
1

θ
+

1

θ − 1
+ ...+ 1

)
≈ θ log(θ). (1)

Let T (i) be the time it takes for collector i to collect ni distinct songs. We compute the expected
time E [T (i)] using the same logic as in (1).

E [T (i)] = θ

ni−1∑
r=1

1

θ − r + 1
= θ

(
1

θ
+

1

θ − 1
+

1

θ − 2
+ . . .+

1

θ − ni + 1

)

≈ θ (log(θ)− log(θ − ni)) = θlog
(

θ
θ−ni

)
. (2)

In order to use the above approximation, the value of {ni} cannot equal θ.

Using equation (2), the total time spent by the m collectors to get n1, . . . , nm songs is calculated
as:

E

[
m∑
i=1

T (i)

]
≈ θ

m∑
i=1

log

(
θ

θ − ni

)
. (3)

To simplify notation, let the random variable H be the total number of distinct songs heard by
all listeners. When H is realized, it takes on the value h. Following in the spirit of Newman and
Shepp (1960), we can also think of the collection of listeners as a single entity. We call that entity
the “supercollector.” The supercollector thus collects H different songs and listens for a total time
of T ∗ = T1 + T2 + . . .+ Tm. Applying the approximation from (2) to T ∗ yields:

E [T ∗] ≈ θlog
(

θ

θ − h

)
. (4)

Since T ∗ = T1 + T2 + . . . + Tm, we equate the right sides of the approximations in (3) and (5) to
obtain:
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θ

(
log

(
θ

θ − n1
× θ

θ − n2
. . .

θ

θ − nm

))
= θlog

(
θ

θ − h

)
, (5)

which we rewrite as:

θ

(
log

(
θ

θ − n1
× θ

θ − n2
. . .

θ

θ − nm

))
− θlog

(
θ

θ − h

)
= 0. (6)

Any solution of equation (6) defines the “listening times” estimator. For m = 2, after we cancel
the θ′s, exponentiate, and cancel the θ′s again, the listening times estimator becomes

θ̂ =
n1n2

n1 + n2 − h
. (7)

This is the hypergeometric estimator found in the capture-recapture literature; for example, see
Yip et al. (1995).

A simple calculation for m = 3 shows that the overlaps amongst collectors, S{1,2}, S{1,3}, S{2,3}
in the notation of Section 2.2 below, are missing from our estimator! At first glance, this result
may appear counterintuitive. It would seem that the overlap between collectors should provide
vital information that the listening times estimator lacks. Sections 2.2 and 2.3 resolve this issue.

2.2 The likelihood function

The nj , j = 1, ...,m are the number of different songs heard by the respective listeners. Concep-
tually, these are constants and are neither parameters nor part of the sample space. Define the
sample space as: {(SB) : B ⊂ {1, ...,m}}, where each SB counts the number of songs heard by
the listeners in B and by no other listeners. For example, if m = 3, the vector (SB) would consist
of the following elements: S{1}, S{2}, S{3}, S{1,2}, S{1,3}, S{2,3}, S{1,2,3}. Thus, the SB partition the
sample space. The parameter of interest, as before, is θ, the total number of songs in the i-tunes
collection.

Recall that H is the total number of distinct songs heard by all listeners. Thus H =
∑

B SB.
Following from the initial model formulation, we consider the distribution of the vector (SB), where
B ∈ P({1, ...,m}) \ ∅.

Fixing X = (n1, . . . , nm), the distribution of the vector (SB) is:

P ((SB) | X = (n1, . . . , nm)) =

(
θ

(SB), θ −
∑

B SB

)
∏
j

(
θ
xj

) . (8)

In equation (8), the numerator counts the number of ways the distribution of songs gives rise to
a particular vector (SB). The denominator counts the number of ways to distribute songs giving
rise to n1, n2, ..., nm. Out of θ possible songs, the first collector hears n1 different songs, the second
collector hears n2 different songs, and so on. Ignoring some constants, equation (8) simplifies to
the following likelihood function:

L(θ) =
θ!

h!(θ − h)!

m∏
j=1

(θ − nj)!nj !
θ!

. (9)
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2.3 A sufficient statistic

We now show that H = h is a sufficient statistic.

Theorem 1. H = h is a sufficient statistic.

Proof. For the multinomial coefficient in equation (8), note that:(
θ

(SB), θ −
∑

B SB

)
=

(
θ

h

)(
h

(SB)

)
. (10)

Hence, equation (8) can be rewritten as:

Pθ ((SB)) =

(
θ
h

)∏
j=1,...,m

(
θ
nj

) × ( h

(SB)

)
. (11)

By the Neyman factorization theorem, H is a sufficient statistic.

The exact distribution of H is:

Pθ (h) =

(
θ

h

)
∏

j=1,...,m

(
θ

nj

) × ∑
(SB)s.t.

∑
B SB=h

(
h

(SB)

)
. (12)

The computation of the last summation is needed to calculate the exact (non-asymptotic) distri-
bution of proposed estimators. Such calculations are performed in Section 2.5.

2.4 The maximum likelihood estimator (MLE) and its uniqueness

We now derive the MLE for the multiple collection framework and show it exists and is unique
except in boundary cases. Let Pθ (h) denote the probability that h is observed given that θ is the
true parameter. Consider the following ratio:

L(θ)

L(θ − 1)
=

m∏
i=1

(θ − ni)

θm−1(θ − h)
, ρ(θ;h). (13)

In solving for the MLE, we first find a continuous solution to ρ(θ;h) = 1. Thus, θ∗ ∈ (h,∞) is a
solution to the following equation:

m∏
i=1

(θ − ni)− θm−1(θ − h) = 0. (14)

Remark 1. Rather surprisingly, the listening times estimator in (6) is the same as the MLE
estimator in (14).This follows from simple algebra. Recall equation (5) , which states:

θ

(
log

(
θ

θ − n1
× θ

θ − n2
. . .

θ

θ − nm

))
= θlog

(
θ

θ − h

)
(15)

After canceling the θ′s and exponentiating, we can rewrite the above expression as:
θm∏m

i=1(θ − ni)
=

θ

θ − h
.

Dividing by a factor of θ on both sides and subtracting the right hand side from the left hand side
yields equation (14).
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The MLE θ̂ is one of the two integers adjacent to θ∗ (or both). Before proceeding, we note that
we are not the first to derive this equation for the MLE. In fact, Darroch (1958) writes this same
equation for the MLE (it is his equation (1) in Section 3.1), but he does not prove that the MLE
has a unique solution in the feasible region θ > h. We now prove the key result that equation (14)
has a unique root in the domain θ̂ ≥ h.

Theorem 2. Consider equation (14). The following three statements about the MLE then hold:

(a) If h <
∑m

i=1 ni, the equation has a unique root in [h, ∞) and the MLE θ̂ is one of the two

integers adjacent to θ∗ (If θ∗ is an integer then θ̂=θ∗.)

(b) If h =
∑m

i=1 ni, the equation has no root in [h, ∞) and the MLE does not exist.

(c) If h = nj for some j then h = nj is the unique root in [h, ∞) and θ̂ = h = nj .

Proof. We first look at the case in which h > ni for all i = 1, ...,m. We consider the rational
function (13) which is R(θ) = ρ(θ;h). Since h > ni ∀ i, neither θ = 0 nor θ = h is a solution to
equation (14). Hence, the solutions of (14) are identical to the solutions of R(θ) = 1. We must
show that this equation can have at most one root larger than h and that such a root exists if and
only if h <

∑m
i=1 ni.

First, to account for the fact that several collectors might collect the same number of songs, we
group terms as follows:

m∏
i=1

(θ − ni) =

p∏
j=1

(θ − yj)pj ,

where yj = ni for exactly pj different indices i. Hence
∑p

j=1 pj = m and p is the number of distinct
values of ni. We then rewrite R(θ) as:

R(θ) =

∏p
j=1(θ − yj)pj

θm−1(θ − h)
.

This function has p roots in the range θ ∈ (0, h), namely y1, . . . , yp. The function is also differen-
tiable there. By Rolle’s theorem, R′(θ) has at least one root in the interval strictly between each
successive value of yj . Hence R′(θ) has at least p − 1 roots in (0, h). Explicitly calculating R′(θ)
and simplifying, we arrive at:

R′(θ) =

∏p
j=1(θ − yj)pj−1

[
θ(θ − h)

∑p
j=1 pj

∏
l 6=j(θ − yl)− (mθ − (m− 1)h)

∏p
j=1(θ − yj)

]
θm(θ − h)2

. (16)

Since the first term inside the brackets in the numerator is zero when θ = 0 or θ = h, but the
second term is not, neither θ = 0 nor θ = h is a root of the numerator. Thus, R′(θ) is a well-defined
function except as θ = 0, h. The roots of R′(θ) in (0, h) are then found by setting the numerator
equal to zero. The solutions are yj for each index j such that pj > 1 and those of equation (17)
below:

θ(θ − h)

p∑
j=1

pj
∏
l 6=j

(θ − yl)− (mθ − (m− 1)h)

p∏
j=1

(θ − yj) = 0. (17)

For sake of clarity, we note that the left hand side of equation (17) is the expression in brackets in
the right hand side of equation (16).
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We wish to know how many roots there are in Equation (17). From Rolle’s theorem, we know
that at least p − 1 of these roots are less than h. Again, by Rolle’s theorem, the roots lie strictly
in the intervals between the yj , j = 1, . . . , p, and they are not equal to any of these values.

We observe that in equation (17) the coefficients of θp+1 cancel, so this equation is a polynomial
equation of degree at most p. The coefficient of θp is (after some simplification)

∑m
i=1 ni−h. Hence

equation (17) has at most p roots if h <
∑m

i=1 ni and at most p − 1 roots if h =
∑m

i=1 ni. In the
latter case we have shown that all of these roots must be less than h. This proves case (b).

For case (a), note that the above discussion shows that R′(θ) has at most one root in the range
θ > h. In this case, however, we observe that the leading term is positive and hence that as θ →∞
the derivative of (17) is positive. It is easy to see that the function R(θ) approaches 1 in the limit
as θ →∞. At θ = h the function R(θ) explodes to positive infinity. Since we can have at most one
local maximum or local minimum for θ > h and the horizontal asymptote in (17) is 1, R(θ) = 1
either has no solutions for θ > h, in which case the derivative is negative in this region, or it has
exactly one solution. In the latter case, the derivative will eventually be positive. This proves case
(a). For case (c), we note that if h = nj then θ∗ = nj is a solution to equation (14). Any additional
solutions must satisfy ∏m

i 6=j(θ − nj)
θm−1

= 1.

However, in the range that θ > ni for all i = 1, ...,m the numerator is strictly smaller than the
denominator and hence there are no solutions. Finally, h = nj implies that nj = maxi(ni), so θ > h
implies θ > ni ∀ i. This proves case (c).

2.5 Calculation of the MLE

Having proved uniqueness and existence of the MLE, we turn now to a simple calculation of the
MLE. For a table of values from which Figure 1 is drawn, see Appendix A. The results were
produced by computing the roots of equation (14) and searching for the unique root satisfying the
conditions of Theorem 2. Figure 1 below, utilizing Table 1 as its input, displays a bar plot of the
distribution of the MLE for m = 3, n1 = 100, n2 = 75, n3 = 50, θ = 200.

Figure 1: Bar plot of the distribution of the MLE for m = 3, n1 = 100, n2 = 75, n3 = 50, θ = 200.

The x-axis is the value of the MLE and the y axis is P
(
θ̂
)

.

The results shown in Figure 1 are encouraging. The distribution is unimodal. The maximum
probability occurs at θ̂=199 (not every value of θ̂ is possible, and in particular θ̂ = 200, the actual
value of θ, is not a possible value). The values of h that lead to the values of θ̂ shown in the plot
are h = 144, 145, ..., 164. Values above and below this range are possible but cumulatively amount
to a total probability of less than .008. Apart from the fact that it is a discrete distribution, one
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may note that the plot has a roughly normal shape, though closer inspection shows it is slightly
skewed to the right. The mean and variance of this distribution are (approximately) 200.3 and
151.7, respectively. The asymptotic values of these moments as calculated in Theorem 9 are 200
and 150, respectively. These asymptotic values agree quite well with the exact values corresponding
to the plot.

Remark 2. As mentioned in Section 1, Bales et al. (2015) recently reported a multiple collection
study. Using the data provided in their manuscript, equation (14) gives a value for the MLE of
12,214. Interestingly, this value is bigger than any estimate reported there (the largest estimate
reported by Bales et al. (2015) is 11,418). The standard deviation of our MLE is approximately
676.5, which is somewhat smaller than the standard deviation values reported for their various
models. The article discusses possible correlations between the capture lists and produces analyses
designed to accommodate possible correlations. Bales et al. (2015) implements a different type of
multiple collector model that is closely related to the model we describe. In the Bales et al. (2015)
model the total population size, θ, as well as the individual collection sizes are Poisson random
variables. The estimator they implement could be viewed as resulting from an E-M estimation of
the total in the missing cell corresponding to unobserved members of the population. Asymptotic
normality of their estimator holds in their model as in ours, though the regularity conditions vary
slightly and the asymptotic variances are different. Under the natural independence assumption,
their estimator will be the same as ours, but the standard errors will be different. See also Van der
Heijden et al. (2012) for further examination and elaboration of such a model. The formulation in
Bales et al. (2015) has the advantage that it extends in a fairly natural way to situations that involve
correlation among the individuals in different collections, and they consider such extensions. As
Darroch (1958) remarks, our multiple hypergeometric framework could in principle also be extended
to such settings. But as he writes, the extension seems complicated and neither he nor we pursue
such an extension.

3 Asymptotics

In this section, we consider asymptotic regimes for the multiple collection setting. Throughout our
discussion, we assume that a predetermined list {ni : i = 1, 2, . . .} of each collector’s collection
number is given at the start. We further assume that all ni ≥ 1. In this first setting, which has
never been previously discussed in the literature, we keep the population parameter θ constant
and analyze how the MLE estimator behaves as we let the number of collectors m → ∞. In the
second setting, which was first, albeit incompletely, discussed by Darroch (1958), we let both the
population θ → ∞ and the amounts collected ni → ∞, i = 1, . . . ,m, while keeping the number of
collectors m fixed.

3.1 Asymptotic scenario I

Consider the scenario in which the population θ remains constant, while the number of collectors
m → ∞. The ith collector has gathered ni distinct songs and the total number of songs collected
by all collectors combined is h. The goal is to estimate θ, the total number of songs in circulation.

Lemma 3 (Boundary Optimization). Let B > max{ni}+ 1 satisfy
m∑
i=1

log(B − ni)− (m− 1) logB = 0. (18)

Then h ≤ B − 1 implies θ̂ = h. Further, define M0(θ) as
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M0(θ) =

(
1− log θ

log(θ + 1)

)−1
. (19)

Then m > M0(θ) implies θ̂ = h.

Proof. Expression (13) yields:

log
L(θ)

L(θ − 1)
=
∑

log(θ − ni)− log(θ − h)− (m− 1) log θ. (20)

Let h < B − 1 and θ0 = h + 1. Then log(θ0 − h) = 0. Furthermore, the right hand side of (20)
is negative since θ0 < B and

∑
log(θ − ni)− (m− 1) log θ is increasing in θ and takes the value 0

when θ = B. It follows that:

log
L(θ0)

L(θ0 − 1)
< 0.

The proof of Theorem (2) guarantees that there will be one root, θ∗, of (14) in [h,∞) and that
θ̂ = bθ∗c and that θ∗ < θ0. This yields that θ̂ < h+ 1 and this implies that θ̂ = h since θ̂ ≥ h. For
the second assertion of the lemma, note that:

m∑
i=1

log(h− ni)− (m− 1) log h ≤
m∑
i=1

log(h− 1)− (m− 1) log h.

When m > M0(θ) then
m∑
i=1

log(θ − 1)− (m− 1) log θ < 0.

Hence in this case B > θ + 1. This implies that h ≤ θ < B − 1 and hence yields θ̂ = h by the first
assertion of the lemma.

3.1.1 Consistency

We proceed to show that the maximum likelihood estimator is consistent.

Theorem 4. Assume θ is fixed and that {ni} is a fixed sequence with each ni ≤ θ. Let θ be the
true number of distinct songs, and let θ̂m be the MLE estimator with m collectors. Then

θ̂m
a.s.→ θ as m→∞.

Proof. By the conclusion of Lemma 3, there exists some N depending only on θ and ni such that
if m ≥ N then θ̂m = h. We first note that

P (collectors do not get song j) =
m∏
i=1

(
1− ni

θ

)
.

Let M(m) =
∑m

i=1 ni. Observe that on a particular try the probability of not picking the jth song
is (1− 1/θ). Arithmetic manipulation shows for each i that
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(
1− ni

θ

)
≤
(

1− 1

θ

)ni
.

Thus,
m∏
i=1

(
1− ni

θ

)
≤
(

1− 1

θ

)M(m)

.

It follows that

P (there exists a song that is not collected) ≤ θ(1− 1/θ)M(m) → 0. (21)

Equivalently,

P (H < θ) ≤ θ(1− 1/θ)M(m) → 0, (22)

where the limit is taken as the number of collectors m→∞. The conclusion of Lemma 3 combined
with the inequality in (22) yield the conclusion of the theorem.

3.1.2 Convergence rates

We would like to bound P (|H − θ| ≥ 1) as M =
∑m

i=1 ni becomes large (or, equivalently, as the
number of collectors becomes large).

Theorem 5 (Convergence Rate). Assume θ is fixed. As M =
∑m

i=1 ni becomes large,

P (H = θ) ≥ e
−θ2+θ
M+1 . (23)

Proof. First, note that

P (|H − θ| ≥ 1)

is bounded above by the probability that at least one song is not collected in M trials (the total
number of songs collected is higher because each collector throws out duplicates). Thus:

P (|H − θ| ≥ 1) ≤ P (at least one song is not chosen if picking M songs with replacement)

= 1− P (all songs chosen) .

To estimate the probability that all songs are chosen, we consider “distributing” M draws to
θ songs in a model in which there is sampling with replacement. We look at the ratio of the
number of ways to distribute M picks so that each song gets at least one pick. To calculate this
with replacement, we use the “stars and bars” method of counting that is germane to elementary
combinatorics. Thus, sampling with replacement, we obtain:

P , P (all songs chosen) =

(
M−1
θ−1

)(
M+θ−1
θ−1

) =
(M − 1) · · · (M − θ + 1)

(M + θ − 1) · · · (M + 1)
. (24)

Since we are trying to find an upper bound to 1 − P , we want a lower bound for P . We observe
that P is a product of θ terms of the type in which the numerator is θ less than the denominator.
Hence the smallest term in the product is the one with the smallest denominator and

P ≥
(
M − θ + 1

M + 1

)θ−1
=

(
1− θ

M + 1

)θ−1
.
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log(1 + x) < x for x < 0. Hence,

logP ≥ (θ − 1) log

(
1− θ

M + 1

)
≤ (θ − 1)

(
−θ

M + 1

)
. (25)

In particular,

P ≥ e
−θ2+θ
M+1 .

Thus for sufficiently large M ,

P (H = θ) ≥ e
−θ2+θ
M+1 .

Corollary 6. If m > M0(θ) then we find that the number of collectors is indeed large enough in
the settings of both Lemma 3 and Theorem 4. Thus,

P
(
θ̂ = θ

)
≥ e

−θ2+θ
M+1 ,

where M is as in Theorem 4, i.e. M =
∑m

i=1 ni.

Proof. From Lemma 3, we have that m > M0(θ) implies that θ̂ = h, i.e. we are in a boundary
optimization regime. Hence the following sets are equal: {H = θ} = {θ̂ = θ}. Thus the lower
bound on the probability is also the same.

3.2 Asymptotic scenario II

3.2.1 The Distribution of H

In asymptotic scenario II, the population θ is large and the number of collectors remains bounded.
In order to construct a suitable asymptotic stochastic formulation, we consider a triangular array of
collection problems, indexed by k = 1, ... The sample sizes in these problems are θ[k] and the collec-

tion sizes are n
[k]
i , i = 1, . . . ,m. The number of collectors, m, is fixed throughout. Darroch (1958)

established results for such a setting under the additional assumption that the ratios c
[k]
i = n

[k]
i /θ

[k]

satisfy c
[k]
i → γi, with 0 < γi < 1. However, in many applications the values of ci may be near

0. Darroch’s results do not apply in such a situation. Indeed, as we will show, in such a case the
limiting Gaussian distribution has a different order of variance from that in Darroch’s setting. In
the sequel, for convenience, we will throughout suppress the superscript [k].

As a practical example, at its crudest level the dual system estimate in the 2000 U.S. census can
be considered as a situation having two enumerations—the original census is the first enumeration.
If one takes the original March 2010 figures (before additional adjustments were made) the census
appeared to contain about 98.8% of the total population. (Hence ci ≈ .988.) The follow-up (re-
capture) survey consisted of roughly .3% of the population (Hence c2 ≈ .003.) The total population
was of course quite large, with θ > 280, 000, 000 so one might hope that any asymptotic theory
would yield good approximations for the distribution of the MLE.

However, the actual analysis was carried out within substrata having much smaller total pop-
ulations, so one cannot count on theory involving total sample sizes in the range of millions. Our
main point in discussing this type of application is to emphasize that theory is needed that applies
to values of ci very near 0. At the same time, we do not in any way wish to suggest that the
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theory in the present paper would completely suffice for realistic applications of this sort. There
are many important special features and practical subtleties of any dual system application, espe-
cially of the coverage evaluation program of the recent U.S. censuses. See Citro et al. (2003) (in
particular, Chapter 6) for detailed discussion of many of these in connection with the 1990 and
2000 censuses. For additional discussion of dual system estimation see Brown et al. (1999), Brown
and Zhao (2008), Darroch et al. (1993), Rao (2003) (especially, Chapter 3.4), and Zaslavsky (1993).

The first theorem of this section proves that H is asymptotically normal. For this purpose,
consider a 2×2× ...× 2 = 2m way contingency table under standard assumptions of independence
(e.g., see Bishop et al. (1986)). Let θ be the total number of observations in the table and let
Xi, i ∈

∏m
1 {0, 1} denote the entries in the cells of the table. Let ni denote the marginal totals.

Note that the Xi correspond to the numbers SB, B ⊂ {1, ...m} (recall that the SB were first defined
in Section 2.1) with i = IB. Let X0 = S∅ = θ −H. We are interested in H = θ −X0, namely the
number of songs collected. The exact formula for the mean was given in Darroch (1958) as:

E [H] = θ −
∏
i(θ − ni)
θm−1

, (26)

Based on expressions in Darroch (1958), the variance is easily derived as:

σ2H = θ(θ − 1)

m∏
j=1

(
1− nj

θ

)(
1− nj

θ − 1

)
+ θ

m∏
j=1

(
1− nj

θ

)
− θ2

m∏
j=1

(
1− nj

θ

)2

= θ

 m∏
j=1

(
1− nj

θ

)
−

m∏
j=1

(
1− nj

θ

)2− m∏
j=1

(
1− nj

θ

)
nj . (27)

Without loss of generality, we assume that

n1 ≥ ... ≥ nm. (28)

Further, assume that

limsup
n1
θ
< 1. (29)

Under these assumptions, it is straightforward to see that the expression in (27) has exact order
n1n2
θ .

The proof of normality of H in Theorem 8 involves a chain of hypergeometric random variables.
It requires an extension of the classical hypergeometric limit theorem proven in Lemma 7 below. Let
us consider a hypergeometric random variable. Fix a rational number 0 < p < 1 and q = 1−p. Let
the sample space contain θp red balls and θq black balls for a total of θ balls. We sample n times from
this space, at random and without replacement. Let the number of red balls drawn be denoted as
k. Theorems 1 and 2 of Pinsky (2003) prove asymptotic normality for this hypergeometric random
variable when p is fixed and either n/θ → t ∈ (0, 1) or n3/θ2 → 0. For the following Lemma,
the parameters p and n depend on θ as θ → ∞ The Lemma generalizes Pinsky’s result so as to
provide a necessary and sufficient condition for normality. The proof begins along the lines of
Pinsky’s argument, but then includes additional steps (we need only to state and prove sufficiency,
as Pinsky establishes the conditions of Lemma 7 to be necessary for asymptotic normality.) See
Nicholson (1956) for further information relevant to the standard hypergeometric setting in which
p and n/θ are fixed constants in (0,1).

For convenience, let xk := k−np√
npq . We now prove Lemma 7.
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Lemma 7. k is asymptotically normal with mean np and variance npq(1−t) when p = p(θ) satisfies
θp→∞ and θq →∞ and where np→∞.

Proof. It suffices to assume that either:

p = p(θ)→ p0 ∈ (0, 1) (30)

or

p→ 0 (31)

and

n ≤ θp with np→∞ (32)

and either

θp→ t ∈ (0, 1) (33)

or

θp→ 0. (34)

(Note that the hypergeometric problem is invariant to relabeling of rows and columns, so there
is no loss of generality in assumng n ≤ θp.) Pinsky (2003) shows via a sequence of algebraic
simplifications that the probability function for k can be written as

P (k; p, n, θ) = B(k;n, p)R(k; p, n, θ). (35)

(we have added the argument “p” to Pinsky’s notation, since p now depends on θ). Here, B denotes
the usual binomial probability function and R is given in equation (2) of Pinsky (2003) as:

R =

∏k−1
j=1

(
1− j

θp

)∏n−k−1
j=1

(
1− j

θq

)
∏n−1
j=1

(
1− j

θ

) . (36)

We are interested in x = O(1), which implies k = np + O(
√
np). Under condition (30), the

DeMoivre-Laplace CLT establishes that

B(k;n, p) ∼ 1
√
npq

φ(x), (37)

where φ(x) is the Gaussian probability density function. In addition, lim inf(q) > 0 because of the
first part of (32) along with (30) and (31). The limiting expression in (37) also holds under (31)
by the binomial to Poisson limit theorem together with the Poisson CLT. Under condition (33),
Pinsky shows that for x = O(1),

R ∼ 1√
1− t

exp

(
−tx2

2(1− t)

)
. (38)

It now remains to check that R ∼ 1 under (34). First, we take the logarithm of both sides of (36).
The first term on the right side becomes
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log
k−1∏
j=1

(
1− j

θp

)
=

k−1∑
j=1

log

(
1− j

θp

)
∼ θp

∫ k/θp

0
log(1− v)dv, (39)

since the summation is the Riemann sum for the integral that follows. Note that k = np+O(
√
np).

Under (32) and (34), n ≤ θp = o(θ), allowing the value of k in the limit in the sum and integral in
equation (39) to be satisfactorality approximated as np. Making a substitution of δ = x − np, we
proceed to evaluate the integral as:

log

k−1∏
j=1

(
1− j

θp

)
∼ θp [wlogw − w]

∣∣∣1
1−k/θp

= −θp (−1− (1− (np+ δ)/θp) log (1− (np+ δ)/θp) + 1− (np+ δ)/θp)

= θp ((1− n/θ)log(1− n/θ)− n/θ − x/θp) + o(1).

The second and third terms of the logged version of equation (36) can be evaluated similarly.
Combining these results together yields:

logR = ((1− n/θ)log(1− n/θ)− n/θ) (θp+ θq − θ + δ − δ) + o(1) = o(1).

Thus, under (34), R ∼ 1, our desired result.

We are now ready to prove Theorem 8.

Theorem 8. Assuming the conditions in (28) and (29) hold, and, further, that

n1n2
θ
→∞, (40)

then H is asymptotically normal.

Proof. The proof is by induction on m. The case m = 1 is included in the statement of the theorem
since the condition in (40) does not apply when m = 1. When m = 1, X0 = θ − n1, a constant.
Consider the collectors arriving in sequential order. The first collector (j = 1) collects n1 songs
and fails to collect θ−n1 songs. The second collection can be viewed as a standard hypergeometric
random variable, with the second collector choosing n2 songs without replacement from θ possible
songs with θ−n1 not seen by observer j = 1 and n1 seen by observer j = 1. Let X01 be the number
of songs collected by the first collector.

E [X01] = n2

(
1− n1

θ

)
and variance

var(X01) =
n1
θ

(
1− n1

θ

)
n2

(
1− n2 − 1

θ − 1

)
.

In addition,

H = n1 +X01.

Hence, for m = 2,

E [H] = n1 + n2 −
n1n2
θ

. (41)
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Since n1 is a constant,

var(H) = var(X01) =
n1
θ
n1

(
1− n1

θ

)
n2

(
1− n2 − 1

θ − 1

)
. (42)

By assumptions (29) and (40),

var(H)→∞ (43)

and

var(H) = O (E [H]) . (44)

Using straightforward algebra, the ratio of the variance of H to its expectation is

var(H)

E [H]
→ 1

n1+n2
n1n2/θ

− 1
.

Since 2n2 ≤ n1 + n2, the denominator is bounded below by 2θ/n1 − 1 ≥ 1.
We now continue with the induction hypothesis on m that H is normal. Assume that for some

m ≥ 2 we have that the result (H is asymptotically normal) holds for all mI < m, or simply that
the theorem holds for m − 1 collectors mI = m − 1. We can then view the new collector nm as
having a collection whose distribution is hypergeometric. There are hI songs already seen by the
first m− 1 collectors, and θ songs total. Let X0(m−1) be the number of songs collected by the mth
collector that were not already collected by the previous collectors. Using the standard formulas
for the hypergeometric distribution, we have:

E
[
X0(m−1)

]
= nm

(
θ − hI
θ

)
,

and

var(X0(m−1)) = nm

(
θ − hI
θ

)(
hI
θ

)(
θ − nm
θ − 1

)
.

X0(m−1) is a hypergeometric variable with parameters θ−hI and nm. However, θ−hI = E
[
X0(m−1)

]
+o(E

[
X0(m−1)

]
). Hence if (n1nm)/θ does not converge to 0, then X0(m−1) converges to normality

by Lemma 7, with mean and variance asymptotically constant and independent of hI . On the other
hand, if (n1nm)/θ → 0, then X0(m−1) is negligible relative to hI . This completes the proof.

Remark 3. The growth condition in (40) is necessary as well as sufficient. If (40) fails, then
lim inf P (H = k) > 0 for each finite k, and thus normality of H cannot hold. Then neither H nor
the MLE can be asymptotically normal.

Theorem 9. Assume (28), (29), and (40). Then the MLE θ̂ is asymptotically normal with mean
θ and variance:

E
[
(θ̂ − θ)2

]
∼

[
θm−1∏m

i=1(θ − ni)
+
m− 1

θ
−

m∑
i=1

1

θ − ni

]−1
(45)

15



Proof. We first show that

θ̂(Eθ [H]) = θ. (46)

From (26),

Eθ [H] = θ

(
1−

∏ θ − nj
θ

)
.

We proceed to substitute the right-hand side of the above equation into equation (14), the defining
equation for the MLE. Simple algebra shows that (46) holds.

We now turn our attention to the asymptotic variance. Under the assumptions of the current
theorem,

σH
µH
→ 0, (47)

where µH and σH denote the mean and variance of H as in Theorem (8). In the context of the
theorem, µH ∼= (n1n2/θ), where “∼=” denotes “is the exact order of.” In addition, σ2H

∼= (n1n2/θ).
Hence,

σH
µH
∼=
(n1n2

θ

)−1
→ 0.

A consequence of (47) is that

H = µH(1 + op(1)) (48)

From standard calculus arguments, it follows that:

θ̂ = θ(1 + op(1)), (49)

and for h̃ between µH and H, [
dθ̂

dh

]
h=h̃

=

[
dθ̂

dh

]
µH

(1 + op(1)), (50)

where the “little o” term holds uniformly in the choice of h̃ between µH and H. The above being
established, we note that the defining equation for the MLE (14) can be equivalently stated as:∑

log(θ − ni) = (m− 1) log(θ) + log(θ − h).

Implicit differentiation yields:[
dθ̂

dh

]
h=h̃

=
1

θ̂(h̃)− h̃

(
1

θ̂(h̃)− h̃
+
m− 1

θ̂(h̃)
−
∑ 1

θ̂(h̃)− nj

)−1
. (51)

We can now employ a standard delta-method argument. Using the above equation, as well as the
results in (48), (49), and (50), an exact Taylor expansion yields that for some h̃ = h̃(H) between
µH and H,

θ̂(H)− θ =

[
dθ̂

dh

]
h̃

(H − µH) =

[
dθ̂

dh

]
µH

(H − µH)(1 + op(1)).

The theorem now follows from Theorem (8). Expression (51) evaluated at µH along with θ = θ̂(µH)
from (46) yields the asymptotic variance formula for θ̂.
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Remark 4. (45) is the same variance formula as in Darroch (1958), but he only established it
under the special condition ni/θ → ci 6= 0.

Remark 5. In the special case considered by Darroch, the right-hand side (RHS) of (45) is � θ.
In our more general setting,

RHS (45) � θ3

maxi,j{ninj}
.

The above documents a non-standard rate of convergence of the MLE. For example, suppose ni ∼
kiθ

ai , ki > 0, a1 ≥ a2 ≥ ... ≥ am. Assume 1 < a1 + a2 < 2. Then

V ar(θ̂) ∼= θ3−(a1+a2) > θ.

The rate in this expression is worse than in the case discussed by Darroch, but the multiple collector
estimator is still useful since θ̂/sd(θ̂)→ 0.

3.3 Inference for MLE

Theorem 9 enables reliable asymptotic inference in the form of confidence intervals for θ. Under
the conditions of the theorem θ̂ is asymptotically normal and asymptotically unbiased in the sense
that

E
[
θ̂ − θ

]
= o(sd(θ̂)).

Its variance is given by (27). This variance can be consistently estimated in the obvious fashion,

since θ̂/θ
p→ 1. Hence under (40) and (29) asymptotically correct 1 − α confidence intervals are

given by θ ± z1−α
2
σ̂, where

σ̂2 = θ̂

 1∏m
i=1

(
1− ni

θ̂

)
+m− 1−

∑m
i=1

1
1−ni

θ̂


−1

. (52)

Validity of the expression (45) is proven in Theorem 9 under the conditions (29) and (40).These
two conditions can be empirically validated to within statistical error.

With respect to (40), note that (27) shows that:

E

[
m∑
i=1

ni −H

]
=

m∑
i=1

ni − θ

(
1−

m∏
i=1

(
1− ni

θ

))
. (53)

where the above is the exact order of n1n2
θ . Conversely,

m∑
i=1

ni − h = OP

(n1n2
θ

)
,

as can be seen from (53) and the formula for the variance in (27). Thus a reasonably large value
of
∑m

i=1 ni− h is a reliable diagnostic for a large value of n1n2
θ , as required by (40). The remaining

condition (29) requires ni/θ to be bounded away from 1. Examination of the formulas for the

variance of H and of θ̂ reveals that θ̂/θ
p→ 1 whenever (40) holds and θ → ∞. Hence, n1/θ̂ not

too close to 1 is a reliable diagnostic for (29). Calculations like those in Table 1 in the Appendix
show that (52) has coverage satisfactorily close to the nominal value in benign setting in which∑m

i=1 ni − h is not small and ni/θ̂ is not close to 1.
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4 Asymptotic efficiency of the MLE

4.1 A variant of the Cramer-Rao lower bound

A standard bound for evaluating efficiency of the MLE is the Cramer-Rao lower bound; see Le Cam
(1986). However, our problem of interest involves a discrete parameter space and integer valued
data. Thus, we seek to prove a discrete analog of the Cramer-Rao lower bound to be used for any
asymptotic regime. The key insight in doing so is to use first differences instead of derivatives,
the latter of which was done in Papathanasiou (1993). Our restriction on h is, as before, that
maxi{ni} ≤ h ≤

∑m
i=1 ni. Without loss of generality, we can formulate the problem in terms of the

following restriction: maxi{ni} ≤ h ≤ θ.
Let f(h; θ) denote the probability of obtaining h given that the true population total is θ.

Consider the “score function” defined as follows:

U(h, θ) ,


f(h;θ)−f(h;θ−1)

f(h;θ) maxi{ni} ≤ h < θ

1 h = θ
0 otherwise.

(54)

In this score function, f(h; θ) = 0 unless maxi{xi} ≤ h ≤ θ. Let ∆xf(x, y) , f(x+ 1, y)− f(x, y)
denote the first difference in the respective parameter/function input. The subscript below ∆
indicates which of the two input variables should be incremented.

Theorem 10. Let Eθ(·) and V arθ denote respectively expectation and variance when the true
population is θ. Then we have a discrete analog of CRLB as follows:

V arθ(θ̂) ≥
(∆θEθ−1(θ̂))

2

Eθ−1(−∆θU(h, θ − 1))
. (55)

Proof. The proof of Theorem 10 follows from ideas in Papathanasiou (1993) and the standard
proof of the Cramer-Rao lower bound for continuous distributions; see section 8.2 of Young and
Smith (2005). Note that for any two random variables X and Y it follows from Cauchy-Schwarz
that

Cov(X,Y )2 ≤ V ar(X)V ar(Y ). (56)

Let X = θ̂ and Y = U . First, we manipulate the covariance term to show that

Cov(U(h, θ), θ̂) = ∆θEθ−1(θ̂). (57)

Let Q denote maxi{ni}. The proof of equation (57) is as follows:

Eθ[U(h, θ)θ̂h] = θ̂θf(θ; θ) +
∑

Q≤h<θ

f(h; θ)− f(h; θ − 1)

f(h; θ)
θ̂hf(h; θ)

= θ̂θf(θ; θ) +
∑

Q≤h<θ
(f(h; θ)− f(h; θ − 1))θ̂h

=
∑

Q≤h≤θ
θ̂hf(h; θ)−

∑
Q≤h≤θ−1

θ̂hf(h; θ − 1)

= Eθ(θ̂h)− Eθ−1(θ̂h).

We now show that
V arθ(U(h, θ)) = Eθ−1[−∆θU(h, θ − 1)]. (58)
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The right hand side of (58) is an analog of the Fisher information. In order to find a suitable
expression for the variance, we must first show that the expectation of the score function is zero.

Eθ[U(h, θ)] = f(θ; θ) +
∑

Q≤h≤θ−1

f(h; θ)− f(h; θ − 1)

f(h; θ)
f(h; θ)

= f(θ; θ) +
∑

Q≤h≤θ−1
f(h; θ)− f(h; θ − 1)

= Eθ(1)− Eθ−1(1)

= 0.

We now expand V arθ(U(h, θ)):

V arθ(U(h, θ)) = Eθ[U(h, θ)2]

= f(θ; θ) +
∑

Q≤h<θ

(
f(h; θ)− f(h; θ − 1)

f(h; θ)

)2

f(h; θ)

= f(θ; θ) +
∑

Q≤h≤θ−1

f(h; θ)2 − 2f(h; θ)f(h; θ − 1) + f(h; θ − 1)2

f(h; θ)

= Eθ(1)− 2Eθ−1(1) + Eθ−1

[
f(h; θ − 1)

f(h; θ)

]
= Eθ−1

[
f(h; θ − 1)

f(h; θ)

]
− 1.

We finish the proof by showing

Eθ−1[−∆θU(h, θ − 1)] = −Eθ−1[U(h, θ) − U(h, θ − 1)]

= −
∑

Q≤h≤θ−2

f(h; θ) − f(h; θ − 1)

f(h; θ)
f(h; θ − 1)

−
(
f(θ − 1; θ) − f(θ − 1; θ − 1)

f(θ − 1; θ)

)
f(θ − 1; θ − 1)

+
∑

Q≤h≤θ−2

f(h; θ − 1) − f(h; θ − 2)

f(h; θ − 1)
f(h; θ − 1) + f(θ − 1; θ − 1)

= −
∑

Q≤h≤θ−1

f(h; θ − 2) +
∑

Q≤h≤θ−1

f(h; θ − 1)

f(h; θ)
f(h; θ − 1)

= Eθ−1

[
f(h; θ − 1)

f(h; θ)

]
− 1. (59)

Combining equations (56), (57), and (58), the proof is complete.

4.1.1 Asymptotic efficiency of the MLE

Theorem 11. Under the discrete CRLB bound in (55), the MLE is asymptotically efficient.

Proof. We first work with the numerator of the right hand side of (55). Recall the formula for
bias β found in Darroch (1958) can be simplified. When simplified, it is clear that the bias is
asymptotically negligible, and thus

∆θEθ−1(θ̂) = 1 + βθ − βθ−1 = 1.
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We now consider the denominator of the right hand side of (55). We first employ a key identify
in the proof of (55), appearing in equation (59).

Eθ−1[−∆θU(h, θ − 1)] = Eθ−1

[
f(h; θ − 1)

f(h; θ)

]
− 1,

where f(h; θ) is the probability of observing a supercollector with h songs when the true population
size is θ. Let uw be the number of individuals in sample j only in which j ∈ w (note that this is the
same as SB in our notation from equation (11), but we use this new notation in the context of this
proof for sake of simplicity of arguments). Equation (11) calculates the probability of obtaining a
specific sequence {uw} which leads to a supercollector of size h to be:

Pθ [{uw}|{ni}] =
θ!

(θ − h)!
∏
w uw!

m∏
i=1

(
θ

ni

)−1
.

To obtain f(h; θ), we must sum over all possible ways {uw} which lead to a supercollector of
size h. In comparing f(h; θ) and f(h; θ − 1) we must assume that h < θ − 1 so that the sequence
to be summed over {uw} is the same. The expression for f(h; θ) is:

f(h; θ) =
θ!

(θ − h)!

m∏
i=1

(
θ

ni

)−1 ∑
∑
uw=h

∏
w

uw!. (60)

and the expression for f(h; θ − 1) is:

f(h; θ − 1) =
(θ − 1)!

(θ − 1− h)!

m∏
i=1

(
θ − 1

ni

)−1 ∑
∑
uw=h

∏
w

uw!. (61)

Combining equations (60) and (61), we obtain:

Eθ−1

[
f(h; θ − 1)

f(h; θ)

]
= Eθ−1

[
θ − h
θ

m∏
i=1

θ

θ − ni

]
=
θ − Eθ−1(h)

θ

m∏
i=1

θ

θ − ni
.

In order to utilize the above equalities more explicitly, we note the following equalities which appear
in Darroch (1958):

θ − 1− Eθ−1(h) = Eθ−1[θ − 1− h] =

∏m
i=1(θ − 1− ni)
(θ − 1)m−1

.

Combining the above equations, we obtain:

Eθ−1

[
f(h; θ − 1)

f(h; θ)

]
− 1 =

(
θ

θ − 1

)m−1 m∏
i=1

θ − 1− ni
θ − ni

+ θm−1
m∏
i=1

1

θ − n1
− 1. (62)

We now simplify equation (62) by making two preliminary calculations:(
θ

θ − 1

)m−1
=

(
1 +

1

θ − 1

)m−1
= 1 +

m− 1

θ − 1
+O(1/θ2) (63)

and
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m∏
i=1

θ − 1− ni
θ − ni

=

m∏
i=1

(
1− 1

θ − ni

)
= 1−

m∑
i=1

1

θ − ni
+O(1/θ2). (64)

By multiplying equations (63) and (64) together and combining with equation(62), we obtain:

Eθ−1 (−∆θU(h, θ − 1)) = θm−1
m∏
i=1

1

θ − ni
−

m∑
i=1

1

θ − ni
+
m− 1

θ − 1
+O(1/θ2).

Theorem 9 proves the asymptotic variance of θ̂ to be:

V arθ(θ̂) =

[
θm−1∏m
i=1 θ − ni

−
∑
i

1

θ − ni
+
m− 1

θ

]−1
.

Following the discrete CRLB bound in (55), we need now consider the following:

[
θm−1∏m
i=1 θ − ni

−
m∑
i=1

1

θ − ni
+
m− 1

θ

]−1
≥

[
θm−1∏m
i=1 θ − ni

−
m∑
i=1

1

θ − ni
+
m− 1

θ − 1

]−1
. (65)

The two sides of the above expression differ only in the last term and the difference between these
two terms is O(1/θ2), and thus we immediately expect the MLE to be asymptotically efficient. We
now prove that it is so. We calculate the difference between the left and the right hand sides of
(65), and simply this difference as:

m−1
θ(θ−1)

O
(

1
θ2

) =
O
(

1
θ2

)
O
(

1
θ2

) = O(1).

Thus, the MLE is asymptotically efficient.

5 Summary

We have considered broad aspects of a standard version of the multiple-collector capture-recapture
problem. In this version, the sizes of the collections are viewed as fixed beforehand or as ancillary
to the total population size, which is the parameter of interest. This is referred to as “Model B”
in the seminal paper Darroch (1958) and is the topic of sections 3 and 4 of that paper. In common
with the treatment there our focus has been on the Maximum Likelihood Estimator. Darroch
describes the maximum likelihood equations for this problem and claims without proof that these
have a unique solution. Our Theorems 1 and 2 describe the sufficient statistic and prove that the
likelihood equation has a unique solution except for special boundary cases or very special cases
when it can have two solutions that are adjacent integers. These results were claimed in Darroch
(1958) without detailed proof. We also provide a new motivation for the MLE a the “listening
times” estimator in Section 2.1.

Asymptotic properties of the MLE are then studied in two different variants of the formulation.
The first variant was not treated by Darroch. In this variant the number of collectors converges to
infinity while the total population size remains constant. Our Theorems 4 and 5 provide asymptotic
convergence results in this setting. The second variant of this problem involves a fixed number of
collectors and collection sizes that grow along with the population size and yields asymptotic
normality of the MLE. Darroch also treats this variant but requires the collection sizes to grow
proportional to the population size. As briefly argued at the start of Section 3.2, such an assumption
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is not suited to many capture-recapture applications. The general situation treated in Section 3.2
requires a new asymptotic normality result for 2m contingency tables (Theorem 8), and as noted
in Remark 5 yields asymptotic normality at different rates from those in Darroch’s case. Section
4 establishes asymptotic efficiency for the MLE in this setting by developing and applying an
appropriate Cramer-Rao type of inequality for this discrete sample space problem.

The problems we have treated here involve at least two collectors. Analogous capture tag and
recapture situations involving a single collector are also of practical interest. See Sun et al. (2014)
for recent examples. The theory in Section 2 applies to establish uniqueness of the MLE. But the
asymptotic distribution of the MLE in the single collector setting is a separate problem and will
be considered in a separate manuscript currently under preparation.
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Appendix A

Table 1 below contains the data from which Figure 1 is drawn.

h 144 145 146 147 148 149 150

MLE 174 176 179 181 184 187 190

P (h | θ = 200) .006175 .011083 .018581 .029104 .04206 .058274 .074506

h 151 152 153 154 155 156 157

MLE 193 196 199 202 206 209 213

P (h | θ = 200) .089037 .099454 .10383 .101307 .092368 .078686 .062614

h 158 159 160 161 162 163 164

MLE 216 220 224 228 232 236 240

P (h | θ = 200) .046531 .032283 .020904 .012628 .007113 .003735 .001827

Table 1: Calculations of MLE for m = 3, n1 = 100, n2 = 75, x3 = 50, P (h | θ = 200).
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